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Attosecond time-resolved spectroscopy is a thought-provoking powerful method for investigating the 

electronic dynamics in atoms [1], and this technique is now being transferred to the scrutiny of electronic 

excitations, electron propagation, and collective electronic (plasmonic) effects in solids [1-4] and 

nanoparticles [1,5,6]. Compared with photoemission from isolated gaseous atoms, numerical simulations 

of such experiments on complex targets require, in addition, the adequate modeling of (i) the target’s 

electronic band structure [1,2], (ii) elastic and inelastic scattering of released photoelectrons inside the 

solid [2-6], (iii) surface and bulk collective electronic excitations [1,5,6], (iv) the screening and reflection 

of the assisting IR-laser field at the solid surface [3], (v) the influence of equilibrating residual charge 

distributions on emitted photoelectrons [1], and (vi) the effect of spatially inhomogeneous plasmonic 

fields on the photoemission process [2,5,6]. 

 

 

Fig. 1: A single ultrashort attosecond XUV pulse 

emits electrons into the field of a delayed IR 

streaking laser pulse, with the polarization 

direction rotated by the angle . The linear 

color/gray scale represents the local electric-field-

strength enhancement for 50 nm radius Au 

nanospheres exposed to 720 nm incident IR pulses 

with peak    intensity 1011 W/cm2 [5]. 

This talk will address the extent to which photoelectron propagation in matter and the plasmonic response 

of nanostructures can be (a) represented in classical [1,6] and quantum mechanical [1-5] simulations and 

(b) retrieved in IR-streaked XUV [1,2,5,6] and IR-XUV two-photon interference (RABBITT) [3,4] 

photoemission spectra. As examples, I will discuss our recent numerical results for photoemission from 

(adsorbate-covered) metal surfaces [2,3] (in comparison with experimental data) and from plasmonic 10 

to 200 nm diameter spherical nanoparticles that show how spatio-temporal information of the sub-

infrared-cycle plasmonic and electronic dynamics is embedded in time-resolved spectra (Fig.1) [5,6]. 
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