

Quantum Efficiency Seminar und Colloquium

STEFAN HAACKE

Institut de Physique et Chimie des Matériaux de Strasbourg University of Strasbourg, CNRS

On the relation of kinetic rates, vibrational coherences and quantum efficiency in ultrafast photo-isomerization reactions

Photo-isomerization reactions occur on sub-nanosecond time scales and are at the basis of a large variety of optoelectronic switching schemes, light-assisted chemical reactions, and biophysical assays. They form also the primary step in key biological processes such as bacterial photo-synthesis, photo-taxis and vision. Indeed, the visual receptor protein rhodopsin, and its photo-sensitive chromophore retinal, display one of the fastest and most efficient photo-isomerization processes known in Nature. Reproducing the < 200 fs reaction time and >60% reaction yield is a formidable challenge for material scientists, theoretical chemists and physicists alike, as it requires a deep understanding of the ultrafast photophysics of these systems.

We will present in this talk our most recent results obtained on biomimetic molecular switches [1-3], and on a new form of retinal proteins, the Anabaena Sensory Rhodopsin. Both systems question the still wide-spread belief, based on the Landau-Zener relation, that higher kinetic rates necessarily imply an increased quantum yield.

- "Mechanistic Origin of the Vibrational Coherence Accompanying the Photoreaction of Biomimetic Molecular Switches", J. Léonard, I. Schapiro, J. Briand, S. Fusi, R. Rossi Paccani, M. Olivucci, and S. Haacke, Chemistry – A European Journal, 48, 15296–15304, (2012)
- "Coherent ultrafast torsional motion and isomerisation of a biomimetic dipolar photo-switch", J. Briand, J. Réhault, O. Bräm, J. Léonard, J. Helbing, A. Cannizzo, V. Zanirato, M. Chergui, M. Olivucci and S. Haacke, Phys. Chem. Chem. Phys. 12, 3178-3187 (2010).
- 3. "An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds", A. Sinicropi et al., Proc. Nat. Acad. Sci. USA, **105**, 17642-17647 (2008)

Date:Tuesday, January 15th, 201315:45Location:Lecture Hall 1, Hermann-Herder-Str. 3, Freiburg

Contact: Andreas Buchleitner, Institute of Physics, Quantum Optics and Statistics T +49 761 203 5821 F +49 761 203 5967 E <u>buchleitner_office@physik.uni-freiburg.de</u> <u>www.physik.uni-freiburg.de</u>